180 lines
5.5 KiB
Python
180 lines
5.5 KiB
Python
import string
|
|
import sys
|
|
|
|
from grid import Grid
|
|
|
|
|
|
EX3 = [
|
|
"#######",
|
|
"#a.#Cd#",
|
|
"##@#@##",
|
|
"#######",
|
|
"##@#@##",
|
|
"#cB#Ab#",
|
|
"#######",
|
|
]
|
|
EX4 = [
|
|
"###############",
|
|
"#d.ABC.#.....a#",
|
|
"######@#@######",
|
|
"###############",
|
|
"######@#@######",
|
|
"#b.....#.....c#",
|
|
"###############",
|
|
]
|
|
|
|
|
|
def main():
|
|
with open("day18.txt", "rt") as input_file:
|
|
lines = input_file.readlines()
|
|
print(f"Part 1 answer: {find_all_keys_with_min_steps(lines)} steps.")
|
|
|
|
with open("day18-p2.txt", "rt") as input_file: # yeah
|
|
lines = input_file.readlines()
|
|
print(f"Part 2 answer: {find_all_keys_with_min_steps(lines)} steps.")
|
|
|
|
def find_all_keys_with_min_steps(lines):
|
|
"""Find all keys with 1 or 4 starting points."""
|
|
lab = Lab(lines=lines)
|
|
lab.dumb_print()
|
|
lab.find_positions()
|
|
num_robots = len(lab.starts)
|
|
states = [(
|
|
lab.starts[0] if num_robots == 1 else encode_posis_packed(lab.starts),
|
|
frozenset(),
|
|
0
|
|
)]
|
|
state_cache = Grid(value_factory=dict)
|
|
num_keys = len(lab.key_pos)
|
|
min_steps = 2**32
|
|
num_processed = 0
|
|
while states:
|
|
num_processed += 1
|
|
one_or_more_pos, obtained, total_steps = states.pop(0)
|
|
if len(obtained) == num_keys:
|
|
print(f"[Found total of {total_steps}]", end="")
|
|
min_steps = min(min_steps, total_steps)
|
|
continue
|
|
|
|
robot_positions = [one_or_more_pos] if num_robots == 1 else decode_posis(one_or_more_pos)
|
|
for pos_index, pos in enumerate(robot_positions):
|
|
for key_name, bt in lab.get_missing_backtracks(pos, keys=obtained).items():
|
|
steps, required, found = bt
|
|
if len(required - obtained) > 0:
|
|
continue
|
|
|
|
next_pos = lab.key_pos[key_name]
|
|
next_obtained = obtained | found | {key_name}
|
|
next_steps = total_steps + steps
|
|
|
|
old_bests = state_cache.getv(next_pos[0], next_pos[1])
|
|
if next_obtained not in old_bests or old_bests[next_obtained] > next_steps:
|
|
print("o", end="")
|
|
if num_robots > 1:
|
|
mpos = robot_positions.copy()
|
|
mpos[pos_index] = next_pos
|
|
next_pos = encode_posis_packed(tuple(mpos))
|
|
states.append((next_pos, next_obtained, next_steps))
|
|
old_bests[next_obtained] = next_steps
|
|
print(".", end="")
|
|
|
|
if num_processed % 100 == 0:
|
|
print(f"[{num_processed}/{len(states)}]", end="")
|
|
sys.stdout.flush()
|
|
|
|
print()
|
|
return min_steps
|
|
|
|
def encode_posis_packed(pt):
|
|
p1, p2, p3, p4 = pt
|
|
return encode_posis(p1, p2, p3, p4)
|
|
|
|
def encode_posis(p1, p2, p3, p4):
|
|
return (
|
|
(p1[0] << 24) + (p2[0] << 16) + (p3[0] << 8) + (p4[0]),
|
|
(p1[1] << 24) + (p2[1] << 16) + (p3[1] << 8) + (p4[1]),
|
|
)
|
|
|
|
def decode_posis(p):
|
|
return [
|
|
((p[0] & 0xFF000000) >> 24, (p[1] & 0xFF000000) >> 24),
|
|
((p[0] & 0x00FF0000) >> 16, (p[1] & 0x00FF0000) >> 16),
|
|
((p[0] & 0x0000FF00) >> 8, (p[1] & 0x0000FF00) >> 8),
|
|
((p[0] & 0x000000FF) , (p[1] & 0x000000FF)),
|
|
]
|
|
|
|
|
|
class Lab(Grid):
|
|
|
|
TILE_PATH = "."
|
|
TILE_WALL = "#"
|
|
TILE_START = "@"
|
|
|
|
def __init__(self, *args, **kwargs):
|
|
super().__init__(*args, **kwargs, value_factory=lambda: " ")
|
|
self.starts = []
|
|
self.key_pos = {}
|
|
self.door_pos = {}
|
|
|
|
def find_positions(self):
|
|
for x, y, v in self.values_gen():
|
|
if v == Lab.TILE_START:
|
|
self.starts.append((x, y))
|
|
if v in string.ascii_lowercase:
|
|
self.key_pos[v] = (x, y)
|
|
if v in string.ascii_uppercase:
|
|
self.door_pos[v] = (x, y)
|
|
for p in self.starts:
|
|
self.setv(p[0], p[1], Lab.TILE_PATH)
|
|
|
|
def get_missing_backtracks(self, start, keys=set()):
|
|
backtracks = {}
|
|
for kname, kpos in self.key_pos.items():
|
|
if kname in keys:
|
|
continue
|
|
path = self.path(start, kpos, keys=keys)
|
|
if path is None:
|
|
continue
|
|
backtracks[kname] = self.backtrack(path, kpos, start)
|
|
return backtracks
|
|
|
|
def path(self, s, e, keys=set()):
|
|
discovered = Grid(value_factory=bool)
|
|
discovered.setv(s[0], s[1], True)
|
|
parents = {}
|
|
q = [s]
|
|
while q:
|
|
pos = q.pop(0)
|
|
if pos == e:
|
|
return parents
|
|
nears = self.near_objects(pos)
|
|
for near_pos, near_tile in nears.items():
|
|
if near_tile == Lab.TILE_WALL:
|
|
continue
|
|
if near_tile in string.ascii_uppercase and near_tile.lower() not in keys:
|
|
continue
|
|
if discovered.getv(near_pos[0], near_pos[1]):
|
|
continue
|
|
discovered.setv(near_pos[0], near_pos[1], True)
|
|
parents[near_pos] = pos
|
|
q.append(near_pos)
|
|
return None
|
|
|
|
def backtrack(self, parents, pos, end):
|
|
count = 0
|
|
requirements = set()
|
|
keys_found = set()
|
|
while pos != end:
|
|
pos = parents[pos]
|
|
count += 1
|
|
tile = self.getv(pos[0], pos[1])
|
|
if tile in string.ascii_uppercase:
|
|
requirements.add(tile.lower())
|
|
elif tile in string.ascii_lowercase:
|
|
keys_found.add(tile)
|
|
return count, requirements, frozenset(keys_found)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|